
pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 2.2.2

Manu Phatak

December 19, 2015

Contents

1 Contents: 1
1.1 python_hangman . 1
1.2 Installation . 2
1.3 Design . 2
1.4 Goals . 3
1.5 Contributing . 4
1.6 Credits . 6
1.7 History . 6
1.8 hangman package . 7

2 Feedback 11

3 Indices and tables 13

Python Module Index 15

i

ii

CHAPTER 1

Contents:

1.1 python_hangman

A well tested, cli, python version-agnostic, multi-platform hangman game. It’s built following a TDD workflow and
a MVC design pattern. Each component services a sensibly distinct logical purpose. Python Hangman is a version
agnostic, tox tested, travis-backed program! Documented and distributed.

1.1.1 Features

• Hangman!

• Documentation: https://python_hangman.readthedocs.org

• Open Source: https://github.com/bionikspoon/python_hangman

• Idiomatic code.

• Thoroughly tested with very high coverage.

• Python version agnostic.

• Demonstrates MVC design out of the scope of web development.

• MIT license

1.1.2 Compatibility

• Python 2.6

• Python 2.7

• Python 3.3

• Python 3.4

• Python 3.5

• PyPy

1

https://python_hangman.readthedocs.org
https://github.com/bionikspoon/python_hangman

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

1.1.3 Call Diagram

1.1.4 Credits

Tools used in rendering this package:

• Cookiecutter

• bionikspoon/cookiecutter-pypackage forked from audreyr/cookiecutter-pypackage

1.2 Installation

At the command line either via easy_install or pip:

$ mkvirtualenv hangman # optional for venv users
$ pip install python_hangman
$ hangman

Uninstall:

$ pip uninstall python_hangman

1.3 Design

This game roughly follows the Model-View-Controller(MVC) pattern. In the latest overhaul, these roles have been
explicitly named: hangman.model, hangman.view , hangman.controller.

Traditionally in MVC the controller is the focal point. It tells the view what information to collect from the
user and what to show. It uses that information to communicate with the model–also, the data persistence later–and
determine the next step. This Hangman MVC adheres to these principals

1.3.1 Model

The model is very simply the hangman game instance–hangman.model.Hangman. It’s a class. Every class should
have “state” and the methods of that class should manage that state. In this case, the “state” is the current “state of the
game”. The public API are for managing that state.

The entirety of the game logic is contained in hangman.model.Hangman. You could technically
play the game in the python console by instantiating the class, submitting guesses with the method
hangman.model.Hangman.guess() and printing the game state.

For example:

>>> from hangman.model import Hangman
>>> game = Hangman(answer='hangman')
>>> game.guess('a')
hangman(status='_A___A_', misses=[], remaining_turns=10)

>>> game.guess('n').guess('z').guess('e')
hangman(status='_AN__AN', misses=['E', 'Z'], remaining_turns=8)

>>> game.status
'_AN__AN'

2 Chapter 1. Contents:

https://github.com/audreyr/cookiecutter
https://github.com/bionikspoon/cookiecutter-pypackage
https://github.com/audreyr/cookiecutter-pypackage

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

>>> game.misses
['E', 'Z']

>>> game.remaining_turns
8

1.3.2 View

hangman.view is a collection of stateless functions that represent the presentation layer. When called these func-
tions handles printing the art to the console, and collecting input from the user.

1.3.3 Controller

In this program, the controller is actually the “game_loop”–hangman.controller.game_loop(). I still
think of it as a controller because the role it plays–communicating I/O from the view with the model-persistence
layer.

The controller tells the view later what to print and what data to collect. It uses that information update the state of the
game (model) and handle game events.

1.4 Goals

1.4.1 2.0.0

MVC pattern. The goal was to explicitly demonstrate an MVC pattern out of the scope of web development.

Idiomatic code. In this overhaul there’s a big emphasis on idiomatic code. The code should be describing its’ own
intention with the clarity your grandmother could read.

1.4.2 1.0.0

Learning! This was a Test Driven Development(TDD) exercise.

Also, explored:

• Tox, test automation

• Travis CI

• Python version agnostic programming

• Setuptools

• Publishing on pip

• Coverage via coveralls

• Documentation with sphinx and ReadTheDocs

• Cookiecutter development

1.4. Goals 3

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

1.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/bionikspoon/python_hangman/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

python_hangman could always use more documentation, whether as part of the official python_hangman docs, in
docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bionikspoon/python_hangman/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.5.2 Get Started!

Ready to contribute? Here’s how to set up python_hangman for local development.

1. Fork the python_hangman repo on GitHub.

2. Clone your fork locally:

4 Chapter 1. Contents:

https://github.com/bionikspoon/python_hangman/issues
https://github.com/bionikspoon/python_hangman/issues

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

$ git clone git@github.com:your_name_here/python_hangman.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv python_hangman
$ cd python_hangman/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b feature/name-of-your-feature
$ git checkout -b hotfix/name-of-your-bugfix

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 hangman tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

1.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4, 3.5, and PyPy. Check https://travis-
ci.org/bionikspoon/python_hangman/pull_requests and make sure that the tests pass for all supported Python
versions.

1.5.4 Tips

To run a subset of tests:

$ py.test tests/test_hangman.py

1.5. Contributing 5

https://travis-ci.org/bionikspoon/python_hangman/pull_requests
https://travis-ci.org/bionikspoon/python_hangman/pull_requests

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

1.6 Credits

1.6.1 Development Lead

• Manu Phatak <bionikspoon@gmail.com>

1.6.2 Contributors

None yet. Why not be the first?

1.7 History

1.7.1 Next Release

• Stay Posted

1.7.2 2.2.0 (2015-18-05)

• Fixed max recursion issue with game loop.

• Updated requirements.

• Removed gratuitous docs – less is more.

• 2.2.1 Handle ctrl+d EOF to exit.

• 2.2.2 Fix broken coverage report.

1.7.3 2.1.0 (2015-18-05)

• Updated docs, divided and automated in a more reasonable way.

• renamed the github repo to mirror pypi name.

• 2.1.1 Fix pypi’s rst render

1.7.4 2.0.0 (2015-12-05)

• Establishing a changelog.

• Massive refactoring, explicit MVC structure.

• Code is even more idiomatic!

• Created a FlashMessage utility.

• Removed poorly implemented classes in favor of stateless functions.

• Add, Remove support for py35, py32.

• 100% code coverage. (2 untestable, inconsequential lines ignored)

6 Chapter 1. Contents:

mailto:bionikspoon@gmail.com

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

1.8 hangman package

1.8.1 python_hangman

A well tested, cli, python version-agnostic, multi-platform hangman game. It’s built following a TDD workflow and
a MVC design pattern. Each component services a sensibly distinct logical purpose. Python Hangman is a version
agnostic, tox tested, travis-backed program! Documented and distributed.

1.8.2 Submodules

hangman.__main__

Entry point for hangman command.

hangman.controller

hangman.controller.game_loop(game=hangman(status=’_________’, misses=[], remain-
ing_turns=10), flash=<hangman.utils.FlashMessage object>)

Run a single game.

Parameters

• game (hangman.model.Hangman) – Hangman game instance.

• flash (hangman.utils.FlashMessage) – FlashMessage utility

hangman.controller.run(game=hangman(status=’_____’, misses=[], remaining_turns=10),
flash=<hangman.utils.FlashMessage object>)

Run game_loop and handle exiting.

Logic is separated from game_loop to cleanly avoid python recursion limits.

Parameters

• game (hangman.model.Hangman) – Hangman game instance.

• flash (hangman.utils.FlashMessage) – FlashMessage utility

hangman.model

class hangman.model.Hangman(answer=None)
Bases: object

The the logic for managing the status of the game and raising key game related events.

>>> from hangman.model import Hangman
>>> game = Hangman(answer='hangman')
>>> game.guess('a')
hangman(status='_A___A_', misses=[], remaining_turns=10)

>>> game.guess('n').guess('z').guess('e')
hangman(status='_AN__AN', misses=['E', 'Z'], remaining_turns=8)

>>> game.status
'_AN__AN'

1.8. hangman package 7

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

>>> game.misses
['E', 'Z']

>>> game.remaining_turns
8

MAX_TURNS = 10

guess(letter)
Add letter to hits or misses.

hits
List of hits.

is_valid_answer(word)
Validate answer. Letters only. Max:16

is_valid_guess(letter)
Validate guess. Letters only. Max:1

misses
List of misses.

remaining_turns
Calculate number of turns remaining.

status
Build a string representation of status.

hangman.utils

App utilities.

class hangman.utils.WordBank
Bases: object

Default collection of words to choose from

WORDS = [’ATTEMPT’, ‘DOLL’, ‘ELLEN’, ‘FLOATING’, ‘PRIDE’, ‘HEADING’, ‘FILM’, ‘KIDS’, ‘MONKEY’, ‘LUNGS’, ‘HABIT’, ‘SPIN’, ‘DISCUSSION’, ‘OFFICIAL’, ‘PHILADELPHIA’, ‘FACING’, ‘MARTIN’, ‘NORWAY’, ‘POLICEMAN’, ‘TOBACCO’, ‘VESSELS’, ‘TALES’, ‘VAPOR’, ‘INDEPENDENT’, ‘COOKIES’, ‘WEALTH’, ‘PENNSYLVANIA’, ‘EXPLANATION’, ‘DAMAGE’, ‘OCCASIONALLY’, ‘EXIST’, ‘SIMPLEST’, ‘PLATES’, ‘CANAL’, ‘NEIGHBORHOOD’, ‘PALACE’, ‘ADVICE’, ‘LABEL’, ‘DANNY’, ‘CLAWS’, ‘RUSH’, ‘CHOSE’, ‘EGYPT’, ‘POETRY’, ‘BREEZE’, ‘WOLF’, ‘MANUFACTURING’, ‘OURSELVES’, ‘SCARED’, ‘ARRANGEMENT’, ‘POSSIBLY’, ‘PROMISED’, ‘BRICK’, ‘ACRES’, ‘TREATED’, ‘SELECTION’, ‘POSITIVE’, ‘CONSTANTLY’, ‘SATISFIED’, ‘ZOO’, ‘CUSTOMS’, ‘UNIVERSITY’, ‘FIREPLACE’, ‘SHALLOW’, ‘INSTANT’, ‘SALE’, ‘PRACTICAL’, ‘SILLY’, ‘SATELLITES’, ‘SHAKING’, ‘ROCKY’, ‘SLOPE’, ‘CASEY’, ‘REMARKABLE’, ‘RUBBED’, ‘HAPPILY’, ‘MISSION’, ‘CAST’, ‘SHAKE’, ‘REQUIRE’, ‘DONKEY’, ‘EXCHANGE’, ‘JANUARY’, ‘MOUNT’, ‘AUTUMN’, ‘SLIP’, ‘BORDER’, ‘LEE’, ‘MELTED’, ‘TRAP’, ‘SOLAR’, ‘RECALL’, ‘MYSTERIOUS’, ‘SWUNG’, ‘CONTRAST’, ‘TOY’, ‘GRABBED’, ‘AUGUST’, ‘RELATIONSHIP’, ‘HUNTER’, ‘DEPTH’, ‘FOLKS’, ‘DEEPLY’, ‘IMAGE’, ‘STIFF’, ‘RHYME’, ‘ILLINOIS’, ‘SPECIES’, ‘ADULT’, ‘FINEST’, ‘THUMB’, ‘SLIGHT’, ‘GRANDMOTHER’, ‘SHOUT’, ‘HARRY’, ‘MATHEMATICS’, ‘MILL’, ‘ESSENTIAL’, ‘TUNE’, ‘FORT’, ‘COACH’, ‘NUTS’, ‘GARAGE’, ‘CALM’, ‘MEMORY’, ‘SOAP’]

classmethod get()
Get a random word from word list.

classmethod set(*values)
Set word list.

class hangman.utils.FlashMessage
Bases: object

Basic “flash message” implementation.

game_lost = False

game_won = False

message = ‘’

exception hangman.utils.GameLost
Bases: exceptions.Exception

Raised when out of turns.

8 Chapter 1. Contents:

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

exception hangman.utils.GameWon
Bases: exceptions.Exception

Raised when answer has been guessed.

exception hangman.utils.GameOverNotificationComplete
Bases: exceptions.Exception

Raised when controller should break game loop.

hangman.view

View layer, printing and prompting.

hangman.view.build_partial_misses(game_misses)
Generator, build game misses block.

hangman.view.build_partial_picture(remaining_turns)
Generator, build the iconic hangman game status.

hangman.view.draw_board(game, message=<hangman.utils.FlashMessage object>)
Present the game status with pictures.

•Clears the screen.

•Flashes any messages.

•Zip the two halves of the picture together.

+---+
| message 45 x 1 |
+---+
| title 45 x 1 |
+----------+----------------------------------+
picture	misses
10 x 10	35 x 10
+----------+----------------------------------+	
hits 45 x 1	
+---+
Dare to pick a letter:
_

Example output:

HANGMAN GAME

| |

|
| MISSES:
| _ _ _ _ _ _ _ _ _ _
|
|

________|_

1.8. hangman package 9

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

_ _ _ _ _ _ _
Dare to pick a letter:
_

Parameters

• game (hangman.Hangman) – game instance

• message (hangman.utils.FlashMessage) – flash message

Raises hangman.utils.GameOverNotificationComplete

hangman.view.print_partial_body(picture, status)

hangman.view.print_partial_hits(game_status)

hangman.view.print_partial_message(flash, answer)

hangman.view.print_partial_title()

hangman.view.print_spacer()
Print empty line

hangman.view.prompt_guess()
Get a single letter.

hangman.view.prompt_play_again()
Prompt user to play again.

hangman.view.say_goodbye()
Write a goodbye message.

10 Chapter 1. Contents:

CHAPTER 2

Feedback

If you have any suggestions or questions about python_hangman feel free to email me at bionikspoon@gmail.com.

If you encounter any errors or problems with python_hangman, please let me know! Open an Issue at the GitHub
https://github.com/bionikspoon/python_hangman main repository.

11

mailto:bionikspoon@gmail.com
https://github.com/bionikspoon/python_hangman

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

12 Chapter 2. Feedback

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

14 Chapter 3. Indices and tables

Python Module Index

h
hangman, 7
hangman.__main__, 7
hangman.controller, 7
hangman.model, 7
hangman.utils, 8
hangman.view, 9

15

pythonℎ𝑎𝑛𝑔𝑚𝑎𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒2.2.2

16 Python Module Index

Index

B
build_partial_misses() (in module hangman.view), 9
build_partial_picture() (in module hangman.view), 9

D
draw_board() (in module hangman.view), 9

F
FlashMessage (class in hangman.utils), 8

G
game_loop() (in module hangman.controller), 7
game_lost (hangman.utils.FlashMessage attribute), 8
game_won (hangman.utils.FlashMessage attribute), 8
GameLost, 8
GameOverNotificationComplete, 9
GameWon, 8
get() (hangman.utils.WordBank class method), 8
guess() (hangman.model.Hangman method), 8

H
Hangman (class in hangman.model), 7
hangman (module), 7
hangman.__main__ (module), 7
hangman.controller (module), 7
hangman.model (module), 7
hangman.utils (module), 8
hangman.view (module), 9
hits (hangman.model.Hangman attribute), 8

I
is_valid_answer() (hangman.model.Hangman method), 8
is_valid_guess() (hangman.model.Hangman method), 8

M
MAX_TURNS (hangman.model.Hangman attribute), 8
message (hangman.utils.FlashMessage attribute), 8
misses (hangman.model.Hangman attribute), 8

P
print_partial_body() (in module hangman.view), 10
print_partial_hits() (in module hangman.view), 10
print_partial_message() (in module hangman.view), 10
print_partial_title() (in module hangman.view), 10
print_spacer() (in module hangman.view), 10
prompt_guess() (in module hangman.view), 10
prompt_play_again() (in module hangman.view), 10

R
remaining_turns (hangman.model.Hangman attribute), 8
run() (in module hangman.controller), 7

S
say_goodbye() (in module hangman.view), 10
set() (hangman.utils.WordBank class method), 8
status (hangman.model.Hangman attribute), 8

W
WordBank (class in hangman.utils), 8
WORDS (hangman.utils.WordBank attribute), 8

17

	Contents:
	python_hangman
	Installation
	Design
	Goals
	Contributing
	Credits
	History
	hangman package

	Feedback
	Indices and tables
	Python Module Index

